Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.476
Filtrar
1.
Acc Chem Res ; 57(8): 1174-1187, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557015

RESUMO

ConspectusSupramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Platina/química
2.
An Acad Bras Cienc ; 96(1): e20230067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656055

RESUMO

Platinum nanoparticles supported by carbon nanotubes were obtained by a simple chemical route and used for preparation of electrochemical sensor towards caffeine determination. Carbon nanotubes were used before and after an acid treatment, yielding two different materials. Morphological and structural characterization of these materials showed platinum nanoparticles (size around 12 nm) distributed randomly along carbon nanotubes. Modified electrodes were directly prepared through a dispersion of these materials. Voltammetric studies in the presence of caffeine revealed an electrocatalytic effect of platinum oxides, electrochemically produced from the chemical oxidation of the platinum nanoparticles. This behavior was explored in the development a selective method for caffeine determination based on platinum oxide reduction at a lower potential value (+0.45 V vs. Ag/AgCl). Using the best set of experimental conditions, it was shown a linear relationship for the caffeine concentration ranging from 5.0 to 25 µmol L-1 with a sensitivity of 449 nA L µmol-1. Limits of detection and quantification of 0.54 and 1.80 µmol L-1 were calculated, respectively. Recovery values for real samples of caffeine pharmaceutical formulations between 98.6% and 101.0% (n = 3) were obtained using the proposed procedure. Statistical calculations showed good concordance (95% confidence level) between the added and recovery values.


Assuntos
Cafeína , Técnicas Eletroquímicas , Nanopartículas Metálicas , Nanotubos de Carbono , Platina , Nanotubos de Carbono/química , Cafeína/análise , Cafeína/química , Platina/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Reprodutibilidade dos Testes , Oxirredução
3.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659001

RESUMO

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismo
4.
Sci Rep ; 14(1): 7875, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570564

RESUMO

This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Soroalbumina Bovina/química , Nanopartículas Metálicas/química , Resveratrol/farmacologia , Platina/farmacologia , Platina/química , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Nanopartículas/química , Anti-Inflamatórios
5.
Talanta ; 273: 125945, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508124

RESUMO

Few study has been carried out on the construction of immunesensors utilized the photoelectric and catalytic signal of nanomaterial. Here, a dual-signal electrochemical immunosensor was constructed for procalcitonin (PCT) detection based on the excellent photoelectric and hydrogen evolution performance of molybdenum-doped cobalt-iron sulfur nanosheets modified by platinum nanoparticles (Pt/Mo-CoFeS). Due to the electronic structure regulation between Pt and Mo-CoFeS, Pt/Mo-CoFeS exhibits superior photoelectric and hydrogen evolution performance compared to single Mo-CoFeS, which improved the sensitivity of the electrochemical immunosensor. Furthermore, the presence of Pt improves surface area and biocompatibility, achieving more antibodies loading and signal amplification. The linear range of PCT detection are 0.002-20 ng mL-1 and 0.002-50 ng mL-1, the detection limits are 0.0015 and 0.0012 ng mL-1. In addition, this electrochemical immunosensor was applied to the PCT analysis in human serum samples with high recoveries. F-test and t-test show that there is no significant difference in the test results between the HER and photoelectric signals, the mutual verification between above two signals can effectively improve the accuracy of detection result.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Humanos , Pró-Calcitonina , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Nanocompostos/química , Platina/química , Grafite/química , Limite de Detecção , Ouro/química
6.
Int J Biol Macromol ; 264(Pt 1): 130598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447839

RESUMO

The fabrication of reliable, reusable and efficient catalyst is crucial for the conversion of nitroaromatic compounds into more chemically valuable amine-based molecules. In this study, a series of chitin supported platinum (Pt) catalysts with high catalytic activity, stability, and reusability were developed by using chitin derived from seafood waste as raw materials. The catalytic performance differences among these catalysts activated by different methods were investigated by hydrogenation of nitroaromatic compounds. The results showed that the multilayer hierarchical pore structure and abundance of hydroxyl and acetamido groups in chitin provided ample anchoring sites for Pt nanoparticles (NPs), ensuring the high dispersion of Pt NPs. Moreover, the interconnected channels between chitin nanofibrous microspheres facilitated rapid transport of reaction substrates. The best Pt/Chitin catalyst exhibited excellent catalytic activity and broad substrate applicability in hydrogenation of nitroaromatic compounds. Significantly, even after 20 runs, no discernible deactivation of activity was observed, demonstrating exceptional catalytic reusability. The application of seafood waste-based catalysts is conducive to the development of a green/sustainable society.


Assuntos
Quitina , Nanopartículas , Platina/química , Hidrogenação , Nanopartículas/química , Alimentos Marinhos
7.
Bioorg Chem ; 146: 107262, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467092

RESUMO

Modern classes of antimicrobials are crucial because most drugs in development today are basically antibiotic derivatives. Even though a large number of metal-based compounds have been studied as antimicrobial agents, relatively few studies have examined the antimicrobial properties of Pd(II) and Pt(II) compounds. The [3+2] cycloaddition reactions of [M(N3)L]PF6 (M = Pd(II) and Pt(II); L = 4'-(2-pyridyl)-2,2':6',2″-terpyridine) with 4,4,4-trifluoro-2-butynoic acid ethyl ester gave the corresponding triazolate complexes. The reaction products were fully characterized with a variety of analytical and spectroscopic tools including X-ray crystallographic analysis. The crystal structure of [Pd(triazolatoCF3,COOCH2CH3)L]PF6 provided cut-off evidence that the kinetically formed N1-triazolato isomer favoured the isomerization to the thermodynamically stable N2-analogue. The experimental work was complemented with computational work to get an insight into the nature of the predominant triazolate isomer. The lysozyme binding affinity of the triazolate complexes was examined by mass spectrometry. An analysis of the lysozyme Pd(II) adducts suggests a coordinative covalent mode of binding via the loss of the triazolato ligand. The free ligand and its triazolate complexes displayed selective toxicity against Candida albicans and Cryptococcus neoformans, while no cytotoxicity was observed against the normal human embryonic kidney cell line.


Assuntos
Anti-Infecciosos , Muramidase , Humanos , Anti-Infecciosos/farmacologia , Reação de Cicloadição , Isomerismo , Ligantes , Platina/química , Chumbo/química
8.
Nanoscale ; 16(12): 5988-5998, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38465745

RESUMO

In this study, we demonstrate that palladium-platinum bimetallic nanoparticles (Pd@Pt NPs) as the nanozyme, combined with a multi-layer paper-based analytical device and DNA hybridization, can successfully detect Mycobacterium tuberculosis. This nanozyme has peroxidase-like properties, which can increase the oxidation rate of the substrate. Compared with horseradish peroxidase, which is widely used in traditional detection, the Michaelis constants of Pd@Pt NPs are fourteen and seventeen times lower than those for 3,3',5,5'-tetramethylbenzidine and H2O2, respectively. To verify the catalytic efficiency of Pd@Pt NPs, this study will execute molecular diagnosis of Mycobacterium tuberculosis. We chose the IS6110 fragment as the target DNA and divided the complementary sequences into the capture DNA and reporter DNA. They were modified on paper and Pd@Pt NPs, respectively, to detect Mycobacterium tuberculosis on a paper-based analytical device. With the above-mentioned method, we can detect target DNA within 15 minutes with a linear range between 0.75 and 10 nM, and a detection limit of 0.216 nM. These results demonstrate that the proposed platform (a DNA-nanozyme integrated paper-based analytical device, dnPAD) can provide sensitive and on-site infection prognosis in areas with insufficient medical resources.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Peróxido de Hidrogênio/química , Platina/química , Paládio/química , Nanopartículas Metálicas/química , DNA , Colorimetria
9.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474273

RESUMO

A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(µ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(µ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(µ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Metionina/análogos & derivados , Compostos de Sulfônio , Camundongos , Animais , Humanos , Platina/química , Simulação de Acoplamento Molecular , Zinco , Antineoplásicos/farmacologia , DNA/química , Pirazinas
10.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474580

RESUMO

Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/química , Complexos de Coordenação/química , Platina/química , Antineoplásicos/farmacologia , Anti-Infecciosos/farmacologia , Íons , Anti-Inflamatórios , Ligantes
11.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474631

RESUMO

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Metano/análogos & derivados , Neoplasias Ovarianas , Fosfinas , Feminino , Humanos , Cisplatino/química , Platina/química , Linhagem Celular Tumoral , Cianetos , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
12.
Top Curr Chem (Cham) ; 382(1): 6, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400859

RESUMO

The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.


Assuntos
Antineoplásicos , Pró-Fármacos , Platina/química , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Clorambucila
13.
J Inorg Biochem ; 254: 112505, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377623

RESUMO

Platinum-based anticancer drugs, while potent, are associated with numerous and severe side effects. Hyperthermia therapy is an effective adjuvant in anticancer treatment, however, clinically used platinum drugs have not been optimised for combination with hyperthermia. The derivatisation of existing anticancer drugs with appropriately chosen thermoresponsive moieties results in drugs being activated only at the heated site. Perfluorinated chains of varying lengths were installed on carboplatin, a clinically approved drug, leading to the successful synthesis of a series of mono- and di- substituted platinum(IV) carboplatin prodrugs. Some of these complexes display relevant thermosensitivity on ovarian cancer cell lines, i.e., being inactive at 37 °C while having comparable activity to carboplatin under mild hyperthermia (42 °C). Nuclear magnetic resonance spectroscopy and mass spectrometry indicated that carboplatin is likely the active platinum(II) anticancer agent upon reduction and cyclic voltammetry revealed that the length of the fluorinated alkyl chain has a strong influence on the rate of carboplatin formation, regulating the subsequent cytotoxicity.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Pró-Fármacos , Feminino , Humanos , Carboplatina/farmacologia , Carboplatina/química , Pró-Fármacos/química , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Platina/química , Cisplatino/química
14.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396859

RESUMO

Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.


Assuntos
Antineoplásicos , Ácido Hidroxi-Indolacético/análogos & derivados , Pró-Fármacos , Humanos , Cisplatino/farmacologia , Platina/química , Oxaliplatina/farmacologia , Carboplatina/farmacologia , Carboplatina/química , Pró-Fármacos/química , Linhagem Celular Tumoral , Antineoplásicos/química
15.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398498

RESUMO

Platinum-based drugs are widely used in chemotherapy for various types of cancer and are considered crucial. Tetravalent platinum (Pt(IV)) compounds have gained significant attention and have been extensively researched among these drugs. Traditionally, Pt(IV) compounds are reduced to divalent platinum (Pt(II)) after entering cells, causing DNA lesions and exhibiting their anti-tumor effect. However, the available evidence indicates that some Pt(IV) derivatives may differ from the traditional mechanism and exert their anti-tumor effect through their overall structure. This review primarily focuses on the existing literature regarding targeted Pt(II) and Pt(IV) compounds, with a specific emphasis on their in vivo mode of action and the properties of reduction release in multifunctional Pt(IV) compounds. This review provides a comprehensive summary of the design and synthesis strategies employed for Pt(II) derivatives that selectively target various enzymes (glucose receptor, folate, telomerase, etc.) or substances (mitochondria, oleic acid, etc.). Furthermore, it thoroughly examines and summarizes the rational design, anti-tumor mechanism of action, and reductive release capacity of novel multifunctional Pt(IV) compounds, such as those targeting p53-MDM2, COX-2, lipid metabolism, dual drugs, and drug delivery systems. Finally, this review aims to provide theoretical support for the rational design and development of new targeted Pt(IV) compounds.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Platina/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
16.
Nanoscale ; 16(9): 4637-4646, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38314787

RESUMO

As one of the most intriguing nanozymes, the platinum (Pt) nanozyme has attracted tremendous research interest due to its various catalytic activities but its application is still limited by its poor colloidal stability and low affinity to substrates. Here, we design a highly stable Pt@carbon dot (Pt@CD) hybrid nanozyme with enhanced peroxidase (POD)-like activity (specific activity of 1877 U mg-1). The Pt@CDs catalyze the decomposition of hydrogen peroxide (H2O2) to produce singlet oxygen and hydroxyl radicals and exhibit high affinity to H2O2 and high specificity to 3,3',5,5'-tetramethyl-benzidine. We reveal that both the hydroxyl and carbonyl groups of CDs could coordinate with Pt2+ and then regulate the charge state of the Pt nanozyme, facilitating the formation of Pt@CDs and improving the POD-like activity of Pt@CDs. Colorimetric detection assays based on Pt@CDs for H2O2, dopamine, and glucose with a satisfactory detection performance are achieved. Moreover, the Pt@CDs show a H2O2-involving antibacterial effect by destroying the cell membrane. Our findings provide new opportunities for designing hybrid nanozymes with desirable stability and catalytic performance by using CDs as nucleating templates and stabilizers.


Assuntos
Carbono , Platina , Carbono/química , Platina/química , Peróxido de Hidrogênio/química , Glucose , Peroxidases/química , Peroxidase/química
17.
Food Chem ; 444: 138672, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330614

RESUMO

Salmonella is one of the most prevalent pathogens causing foodborne diseases. In this study, a novel electrochemical immunosensor was designed for the rapid and accurate detection of Salmonella typhimurium (S. typhimurium) in milk. Platinum nanoparticles and Co/Zn-metal-organic framework @carboxylic multiwalled carbon nanotubes in the immunosensor acted synergistically to enhance the sensing sensitivity and stability. The materials and sensors were characterised using X-ray diffractometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, differential pulse voltammetry, cyclic voltammetry, and other techniques. The optimised immunosensor showed a linear response for S. typhimurium concentrations in the range from 1.3 × 102 to 1.3 × 108 CFU mL-1, with a detection limit of 9.4 × 101 CFU mL-1. The assay also demonstrates good specificity, reproducibility, stability, and practical application potential, and the method can be extended to other foodborne pathogens.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanotubos de Carbono , Animais , Salmonella typhimurium , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química , Leite/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Platina/química , Imunoensaio , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro/química
18.
Dalton Trans ; 53(6): 2475-2486, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38174938

RESUMO

Twelve (N^N^N)platinum pyridyl complexes, (N^N^N)Pt(pyF), were synthesised and investigated for their singlet oxygen generation and potential biological activities. They exhibited 1IL and 1MLCT absorption transitions at approximately 325 and 360 nm, identified through TD-DFT calculations. Luminescence was observed only in the L1-derived compounds in solution, with a dual emission with the main contribution of phosphorescence under deaerated conditions. Room temperature phosphorescence was detected in all solid-state cases. Electron-withdrawing substituents at specific positions (R1 and X) and the number of fluorine atoms in R2 were found to enhance the photosensitizing capabilities of these compounds. Biological assessments, including cytotoxicity and photocytotoxicity, were conducted to evaluate their potential as chemotherapeutic agents and photosensitizers. Complexes with chloro substitution in the N^N^N tridentate ligand of the central pyridine ring exhibited promising chemotherapeutic properties. Ancillary pyridine ring substitution became significant under irradiation conditions, with fluoromethylated substituents enhancing cytotoxicity. Complex 2-CF3 was the most efficient singlet oxygen producer and a highly effective photosensitizer. CHF2-substituted complexes also showed improved photosensitizing activity. DNA binding studies indicated moderate interactions with DNA, offering insights into potential biological applications.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , DNA , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Platina/química , Piridinas/farmacologia , Piridinas/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia
19.
J Inorg Biochem ; 252: 112475, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199050

RESUMO

Utilizing isoquinoline as a carrier ligand, we have evaluated the reactivity of selected trans­platinum planar amine (TPA) carboxylate compounds by varying the leaving carboxylate group (acetate, hydroxyacetate, and lactate) in an effort to optimize the cytotoxic and metabolic efficiency. To measure the pharmacological properties of these compounds, a combination of systematic biophysical and biological studies were carried out mainly involving substitution reaction with NAM (N-acetyl-methionine), effects on DNA structural perturbation, cytotoxicity, cellular accumulation, metabolic stability, and cell cycle effects. TPA compounds showed minimal losses in cytotoxic efficacy and outperformed cisplatin after pre-incubation with serum, while displaying a distinct micromolar cytotoxic activity with minimal DNA binding and unaltered cell cycle. Monitoring the TPA compounds with NAM suggests the following trend for the reactivity: hydroxyacetate > lactate > acetate. The same trend was seen for the cytotoxicity in tumor cells and DNA binding, while the rate of drug inactivation/protein binding in cells was not significantly different among these leaving groups. Thus, our results show superior cellular efficacy of TPA compounds and distinct micromolar cytotoxic activities different than cisplatin. Moreover, we found the TPA compounds had prolonged survival and decreased tumor burden compared to the control mice in a relevant human ovarian cancer mouse model with A2780 cells expressing luciferase. Therefore, we propose that further optimization of the basic TPA structure can give further enhanced in vivo activity and may eventually be translated into the development of clinically relevant non-traditional platinum drugs.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , Platina/farmacologia , Platina/química , Cisplatino/farmacologia , Cisplatino/química , Linhagem Celular Tumoral , Compostos Organoplatínicos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , DNA/química , Acetatos , Lactatos , Glicolatos , Ensaios de Seleção de Medicamentos Antitumorais
20.
Chemistry ; 30(10): e202302948, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38171804

RESUMO

Platinum complexes are potential antitumor drugs in chemotherapy. Their impact on tumor treatment could be greatly strengthened by combining with immunotherapy. Increasing evidences indicate that the antitumor activity of platinum complexes is not limited to chemical killing effects, but also extends to immunomodulatory actions. This review introduced the general concept of chemoimmunotherapy and summarized the progress of platinum complexes as chemoimmunotherapeutic agents in recent years. Platinum complexes could be developed into inducers of immunogenic cell death, blockers of immune checkpoint, regulators of immune signaling pathway, and modulators of tumor immune microenvironment, etc. The synergy between chemotherapeutic and immunomodulatory effects reinforces the antitumor activity of platinum complexes, and helps them circumvent the drug resistance and systemic toxicity. The exploration of platinum complexes for chemoimmunotherapy may create new opportunities to revive the discovery of metal anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Platina/uso terapêutico , Platina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...